Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nat Methods ; 21(2): 195-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347141

RESUMO

Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint-a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Semântica
2.
Med Image Anal ; 93: 103075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38199069

RESUMO

Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the presence of limited labeled data. Another effective technique to enlarge datasets in a small labeled data regime is data augmentation. An intuitive active learning approach thus consists of combining informative sample selection and data augmentation to leverage their respective advantages and improve the performance of AL systems. In this paper, we propose a novel approach called GANDALF (Graph-based TrANsformer and Data Augmentation Active Learning Framework) to combine sample selection and data augmentation in a multi-label setting. Conventional sample selection approaches in AL have mostly focused on the single-label setting where a sample has only one disease label. These approaches do not perform optimally when a sample can have multiple disease labels (e.g., in chest X-ray images). We improve upon state-of-the-art multi-label active learning techniques by representing disease labels as graph nodes and use graph attention transformers (GAT) to learn more effective inter-label relationships. We identify the most informative samples by aggregating GAT representations. Subsequently, we generate transformations of these informative samples by sampling from a learned latent space. From these generated samples, we identify informative samples via a novel multi-label informativeness score, which beyond the state of the art, ensures that (i) generated samples are not redundant with respect to the training data and (ii) make important contributions to the training stage. We apply our method to two public chest X-ray datasets, as well as breast, dermatology, retina and kidney tissue microscopy MedMNIST datasets, and report improved results over state-of-the-art multi-label AL techniques in terms of model performance, learning rates, and robustness.


Assuntos
Mama , Tórax , Humanos , Raios X , Radiografia , Diagnóstico por Computador
3.
Chemosphere ; 349: 140933, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092166

RESUMO

Anaerobic ammonium oxidation, associated with both iron (Feammox) and manganese (Mnammox) reduction, is a microbial nitrogen (N) removal mechanism recently identified in natural ecosystems. Nevertheless, the spatial distributions of these non-canonical Anammox (NC-Anammox) pathways and their environmental drivers in subtidal coastal sediments are still unknown. Here, we determined the potential NC-Anammox rates and abundance of dissimilatory metal-reducing bacteria (Acidomicrobiaceae A6 and Geobacteraceae) at different horizons (0-20 cm at 5 cm intervals) of subtidal coastal sediments using the 15N isotope-tracing technique and molecular analyses. Sediments were collected across three sectors (inlet, transition, and inner) in a coastal lagoon system (Bahia de San Quintin, Mexico) dominated by seagrass meadows. The positive relationship between 30N2 production rates and dissimilatory Fe and Mn reduction provided evidence for Feammox's and Mnammox's co-occurrence. N loss through NC-Anammox was detected in subtidal sediments, with potential rates of 0.07-0.62 µg N g-1 day-1. NC-Anammox process in vegetated sediments tended to be higher than those in adjacent unvegetated ones. NC-Anammox rates showed a subsurface peak (between 5 and 15 cm) in the vegetated sediments but decreased consistently with depth in the adjacent bare bottoms. Thus, the presence/absence of seagrasses and sediment characteristics, particularly the availability of organic carbon and microbiologically reducible Fe(III) and Mn(IV), affected the abundance of dissimilatory metal-reducing bacteria, which mediated NC-Anammox activity and the associated N removal. An annual loss of 32.31 ± 3.57 t N was estimated to be associated with Feammox and Mnammox within the investigated area, accounting for 2.8-4.7% of the gross total import of reactive N from the ocean into the Bahia de San Quintin. Taken as a whole, this study reveals the distribution patterns and controlling factors of the NC-Anammox pathways along a coastal lagoon system. It improves our understanding of the coupling between N and trace metal cycles in coastal environments.


Assuntos
Compostos de Amônio , Compostos Férricos , Compostos Férricos/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Compostos de Amônio/metabolismo , Ciclo do Nitrogênio , Oxirredução , Nitrogênio/metabolismo , Bactérias/metabolismo
4.
JACC Cardiovasc Imaging ; 17(2): 195-211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38099914

RESUMO

Amyloid transthyretin (ATTR) amyloidosis is a protein-misfolding disease characterized by fibril accumulation in the extracellular space that can result in local tissue disruption and organ dysfunction. Cardiac involvement drives morbidity and mortality, and the heart is the major organ affected by ATTR amyloidosis. Multimodality cardiac imaging (ie, echocardiography, scintigraphy, and cardiac magnetic resonance) allows accurate diagnosis of ATTR cardiomyopathy (ATTR-CM), and this is of particular importance because ATTR-targeting therapies have become available and probably exert their greatest benefit at earlier disease stages. Apart from establishing the diagnosis, multimodality cardiac imaging may help to better understand pathogenesis, predict prognosis, and monitor treatment response. The aim of this review is to give an update on contemporary and evolving cardiac imaging methods and their role in diagnosing and managing ATTR-CM. Further, an outlook is presented on how artificial intelligence in cardiac imaging may improve future clinical decision making and patient management in the setting of ATTR-CM.


Assuntos
Neuropatias Amiloides Familiares , Cardiomiopatias , Humanos , Pré-Albumina/genética , Inteligência Artificial , Valor Preditivo dos Testes , Neuropatias Amiloides Familiares/diagnóstico por imagem , Neuropatias Amiloides Familiares/terapia , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/terapia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38082788

RESUMO

Treatment for glioblastoma, an aggressive brain tumour usually relies on radiotherapy. This involves planning how to achieve the desired radiation dose distribution, which is known as treatment planning. Treatment planning is impacted by human errors, inter-expert variability in segmenting (or outlining) the tumor target and organs-at-risk, and differences in segmentation protocols. Erroneous segmentations translate to erroneous dose distributions, and hence sub-optimal clinical outcomes. Reviewing segmentations is time-intensive, significantly reduces the efficiency of radiation oncology teams, and hence restricts timely radiotherapy interventions to limit tumor growth. Moreover, to date, radiation oncologists review and correct segmentations without information on how potential corrections might affect radiation dose distributions, leading to an ineffective and suboptimal segmentation correction workflow. In this paper, we introduce an automated deep-learning based method: atomic surface transformations for radiotherapy quality assurance (ASTRA), that predicts the potential impact of local segmentation variations on radiotherapy dose predictions, thereby serving as an effective dose-aware sensitivity map of segmentation variations. On a dataset of 100 glioblastoma patients, we show how the proposed approach enables assessment and visualization of areas of organs-at-risk being most susceptible to dose changes, providing clinicians with a dose-informed mechanism to review and correct segmentations for radiation therapy planning. These initial results suggest strong potential for employing such methods within a broader automated quality assurance system in the radiotherapy planning workflow. Code to reproduce this is available at https://github.com/amithjkamath/astraClinical Relevance: ASTRA shows promise in indicating what regions of the OARs are more likely to impact the distribution of radiation dose.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Radioterapia (Especialidade) , Humanos , Glioblastoma/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Órgãos em Risco
6.
Cancers (Basel) ; 15(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37686501

RESUMO

External beam radiation therapy requires a sophisticated and laborious planning procedure. To improve the efficiency and quality of this procedure, machine-learning models that predict these dose distributions were introduced. The most recent dose prediction models are based on deep-learning architectures called 3D U-Nets that give good approximations of the dose in 3D almost instantly. Our purpose was to train such a 3D dose prediction model for glioblastoma VMAT treatment and test its robustness and sensitivity for the purpose of quality assurance of automatic contouring. From a cohort of 125 glioblastoma (GBM) patients, VMAT plans were created according to a clinical protocol. The initial model was trained on a cascaded 3D U-Net. A total of 60 cases were used for training, 15 for validation and 20 for testing. The prediction model was tested for sensitivity to dose changes when subject to realistic contour variations. Additionally, the model was tested for robustness by exposing it to a worst-case test set containing out-of-distribution cases. The initially trained prediction model had a dose score of 0.94 Gy and a mean DVH (dose volume histograms) score for all structures of 1.95 Gy. In terms of sensitivity, the model was able to predict the dose changes that occurred due to the contour variations with a mean error of 1.38 Gy. We obtained a 3D VMAT dose prediction model for GBM with limited data, providing good sensitivity to realistic contour variations. We tested and improved the model's robustness by targeted updates to the training set, making it a useful technique for introducing dose awareness in the contouring evaluation and quality assurance process.

7.
Front Radiol ; 3: 1211859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745204

RESUMO

Automated tumor segmentation tools for glioblastoma show promising performance. To apply these tools for automated response assessment, longitudinal segmentation, and tumor measurement, consistency is critical. This study aimed to determine whether BraTumIA and HD-GLIO are suited for this task. We evaluated two segmentation tools with respect to automated response assessment on the single-center retrospective LUMIERE dataset with 80 patients and a total of 502 post-operative time points. Volumetry and automated bi-dimensional measurements were compared with expert measurements following the Response Assessment in Neuro-Oncology (RANO) guidelines. The longitudinal trend agreement between the expert and methods was evaluated, and the RANO progression thresholds were tested against the expert-derived time-to-progression (TTP). The TTP and overall survival (OS) correlation was used to check the progression thresholds. We evaluated the automated detection and influence of non-measurable lesions. The tumor volume trend agreement calculated between segmentation volumes and the expert bi-dimensional measurements was high (HD-GLIO: 81.1%, BraTumIA: 79.7%). BraTumIA achieved the closest match to the expert TTP using the recommended RANO progression threshold. HD-GLIO-derived tumor volumes reached the highest correlation between TTP and OS (0.55). Both tools failed at an accurate lesion count across time. Manual false-positive removal and restricting to a maximum number of measurable lesions had no beneficial effect. Expert supervision and manual corrections are still necessary when applying the tested automated segmentation tools for automated response assessment. The longitudinal consistency of current segmentation tools needs further improvement. Validation of volumetric and bi-dimensional progression thresholds with multi-center studies is required to move toward volumetry-based response assessment.

8.
JMIR Dermatol ; 6: e42129, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37616039

RESUMO

BACKGROUND: Previous research studies have demonstrated that medical content image retrieval can play an important role by assisting dermatologists in skin lesion diagnosis. However, current state-of-the-art approaches have not been adopted in routine consultation, partly due to the lack of interpretability limiting trust by clinical users. OBJECTIVE: This study developed a new image retrieval architecture for polarized or dermoscopic imaging guided by interpretable saliency maps. This approach provides better feature extraction, leading to better quantitative retrieval performance as well as providing interpretability for an eventual real-world implementation. METHODS: Content-based image retrieval (CBIR) algorithms rely on the comparison of image features embedded by convolutional neural network (CNN) against a labeled data set. Saliency maps are computer vision-interpretable methods that highlight the most relevant regions for the prediction made by a neural network. By introducing a fine-tuning stage that includes saliency maps to guide feature extraction, the accuracy of image retrieval is optimized. We refer to this approach as saliency-enhanced CBIR (SE-CBIR). A reader study was designed at the University Hospital Zurich Dermatology Clinic to evaluate SE-CBIR's retrieval accuracy as well as the impact of the participant's confidence on the diagnosis. RESULTS: SE-CBIR improved the retrieval accuracy by 7% (77% vs 84%) when doing single-lesion retrieval against traditional CBIR. The reader study showed an overall increase in classification accuracy of 22% (62% vs 84%) when the participant is provided with SE-CBIR retrieved images. In addition, the overall confidence in the lesion's diagnosis increased by 24%. Finally, the use of SE-CBIR as a support tool helped the participants reduce the number of nonmelanoma lesions previously diagnosed as melanoma (overdiagnosis) by 53%. CONCLUSIONS: SE-CBIR presents better retrieval accuracy compared to traditional CBIR CNN-based approaches. Furthermore, we have shown how these support tools can help dermatologists and residents improve diagnosis accuracy and confidence. Additionally, by introducing interpretable methods, we should expect increased acceptance and use of these tools in routine consultation.

9.
Invest Radiol ; 58(12): 882-893, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493348

RESUMO

OBJECTIVES: The aim of this study was to evaluate the severity of COVID-19 patients' disease by comparing a multiclass lung lesion model to a single-class lung lesion model and radiologists' assessments in chest computed tomography scans. MATERIALS AND METHODS: The proposed method, AssessNet-19, was developed in 2 stages in this retrospective study. Four COVID-19-induced tissue lesions were manually segmented to train a 2D-U-Net network for a multiclass segmentation task followed by extensive extraction of radiomic features from the lung lesions. LASSO regression was used to reduce the feature set, and the XGBoost algorithm was trained to classify disease severity based on the World Health Organization Clinical Progression Scale. The model was evaluated using 2 multicenter cohorts: a development cohort of 145 COVID-19-positive patients from 3 centers to train and test the severity prediction model using manually segmented lung lesions. In addition, an evaluation set of 90 COVID-19-positive patients was collected from 2 centers to evaluate AssessNet-19 in a fully automated fashion. RESULTS: AssessNet-19 achieved an F1-score of 0.76 ± 0.02 for severity classification in the evaluation set, which was superior to the 3 expert thoracic radiologists (F1 = 0.63 ± 0.02) and the single-class lesion segmentation model (F1 = 0.64 ± 0.02). In addition, AssessNet-19 automated multiclass lesion segmentation obtained a mean Dice score of 0.70 for ground-glass opacity, 0.68 for consolidation, 0.65 for pleural effusion, and 0.30 for band-like structures compared with ground truth. Moreover, it achieved a high agreement with radiologists for quantifying disease extent with Cohen κ of 0.94, 0.92, and 0.95. CONCLUSIONS: A novel artificial intelligence multiclass radiomics model including 4 lung lesions to assess disease severity based on the World Health Organization Clinical Progression Scale more accurately determines the severity of COVID-19 patients than a single-class model and radiologists' assessment.


Assuntos
COVID-19 , Humanos , Inteligência Artificial , Estudos Retrospectivos , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Progressão da Doença
10.
Sci Data ; 10(1): 208, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059722

RESUMO

Brain metastasis (BM) is one of the main complications of many cancers, and the most frequent malignancy of the central nervous system. Imaging studies of BMs are routinely used for diagnosis of disease, treatment planning and follow-up. Artificial Intelligence (AI) has great potential to provide automated tools to assist in the management of disease. However, AI methods require large datasets for training and validation, and to date there have been just one publicly available imaging dataset of 156 BMs. This paper publishes 637 high-resolution imaging studies of 75 patients harboring 260 BM lesions, and their respective clinical data. It also includes semi-automatic segmentations of 593 BMs, including pre- and post-treatment T1-weighted cases, and a set of morphological and radiomic features for the cases segmented. This data-sharing initiative is expected to enable research into and performance evaluation of automatic BM detection, lesion segmentation, disease status evaluation and treatment planning methods for BMs, as well as the development and validation of predictive and prognostic tools with clinical applicability.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Sistema Nervoso Central , Imageamento por Ressonância Magnética/métodos , Prognóstico
11.
Comput Methods Programs Biomed ; 231: 107374, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738608

RESUMO

BACKGROUND AND OBJECTIVE: Despite fast evolution cycles in deep learning methodologies for medical imaging in radiotherapy, auto-segmentation solutions rarely run in clinics due to the lack of open-source frameworks feasible for processing DICOM RT Structure Sets. Besides this shortage, available open-source DICOM RT Structure Set converters rely exclusively on 2D reconstruction approaches leading to pixelated contours with potentially low acceptance by healthcare professionals. PyRaDiSe, an open-source, deep learning framework independent Python package, addresses these issues by providing a framework for building auto-segmentation solutions feasible to operate directly on DICOM data. In addition, PyRaDiSe provides profound DICOM RT Structure Set conversion and processing capabilities; thus, it applies also to auto-segmentation-related tasks, such as dataset construction for deep learning model training. METHODS: The PyRaDiSe package follows a holistic approach and provides DICOM data handling, deep learning model inference, pre-processing, and post-processing functionalities. The DICOM data handling allows for highly automated and flexible handling of DICOM image series, DICOM RT Structure Sets, and DICOM registrations, including 2D-based and 3D-based conversion from and to DICOM RT Structure Sets. For deep learning model inference, extending given skeleton classes is straightforwardly achieved, allowing for employing any deep learning framework. Furthermore, a profound set of pre-processing and post-processing routines is included that incorporate partial invertibility for restoring spatial properties, such as image origin or orientation. RESULTS: The PyRaDiSe package, characterized by its flexibility and automated routines, allows for fast deployment and prototyping, reducing efforts for auto-segmentation pipeline implementation. Furthermore, while deep learning model inference is independent of the deep learning framework, it can easily be integrated into famous deep learning frameworks such as PyTorch or Tensorflow. The developed package has successfully demonstrated its capabilities in a research project at our institution for organs-at-risk segmentation in brain tumor patients. Furthermore, PyRaDiSe has shown its conversion performance for dataset construction. CONCLUSIONS: The PyRaDiSe package closes the gap between data science and clinical radiotherapy by enabling deep learning segmentation models to be easily transferred into clinical research practice. PyRaDiSe is available on https://github.com/ubern-mia/pyradise and can be installed directly from the Python Package Index using pip install pyradise.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Órgãos em Risco
12.
Neurooncol Adv ; 5(1): vdac184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685009

RESUMO

Background: Accurate and repeatable measurement of high-grade glioma (HGG) enhancing (Enh.) and T2/FLAIR hyperintensity/edema (Ed.) is required for monitoring treatment response. 3D measurements can be used to inform the modified Response Assessment in Neuro-oncology criteria. We aim to develop an HGG volumetric measurement and visualization AI algorithm that is generalizable and repeatable. Methods: A single 3D-Convoluted Neural Network, NS-HGlio, to analyze HGG on MRIs using 5-fold cross validation was developed using retrospective (557 MRIs), multicentre (38 sites) and multivendor (32 scanners) dataset divided into training (70%), validation (20%), and testing (10%). Six neuroradiologists created the ground truth (GT). Additional Internal validation (IV, three institutions) using 70 MRIs, and External validation (EV, single institution) using 40 MRIs through measuring the Dice Similarity Coefficient (DSC) of Enh., Ed. ,and Enh. + Ed. (WholeLesion/WL) tumor tissue and repeatability testing on 14 subjects from the TCIA MGH-QIN-GBM dataset using volume correlations between timepoints were performed. Results: IV Preoperative median DSC Enh. 0.89 (SD 0.11), Ed. 0.88 (0.28), WL 0.88 (0.11). EV Preoperative median DSC Enh. 0.82 (0.09), Ed. 0.83 (0.11), WL 0.86 (0.06). IV Postoperative median DSC Enh. 0.77 (SD 0.20), Ed 0.78. (SD 0.09), WL 0.78 (SD 0.11). EV Postoperative median DSC Enh. 0.75 (0.21), Ed 0.74 (0.12), WL 0.79 (0.07). Repeatability testing; Intraclass Correlation Coefficient of 0.95 Enh. and 0.92 Ed. Conclusion: NS-HGlio is accurate, repeatable, and generalizable. The output can be used for visualization, documentation, treatment response monitoring, radiation planning, intra-operative targeting, and estimation of Residual Tumor Volume among others.

14.
IEEE Rev Biomed Eng ; 16: 192-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34847043

RESUMO

Healthcare agents, in particular in the oncology field, are currently collecting vast amounts of diverse patient data. In this context, some decision-support systems, mostly based on deep learning techniques, have already been approved for clinical purposes. Despite all the efforts in introducing artificial intelligence methods in the workflow of clinicians, its lack of interpretability - understand how the methods make decisions - still inhibits their dissemination in clinical practice. The aim of this article is to present an easy guide for oncologists explaining how these methods make decisions and illustrating the strategies to explain them. Theoretical concepts were illustrated based on oncological examples and a literature review of research works was performed from PubMed between January 2014 to September 2020, using "deep learning techniques," "interpretability" and "oncology" as keywords. Overall, more than 60% are related to breast, skin or brain cancers and the majority focused on explaining the importance of tumor characteristics (e.g. dimension, shape) in the predictions. The most used computational methods are multilayer perceptrons and convolutional neural networks. Nevertheless, despite being successfully applied in different cancers scenarios, endowing deep learning techniques with interpretability, while maintaining their performance, continues to be one of the greatest challenges of artificial intelligence.


Assuntos
Neoplasias Encefálicas , Oncologistas , Humanos , Inteligência Artificial , Aprendizado de Máquina , Redes Neurais de Computação
15.
IEEE Trans Med Imaging ; 42(3): 661-673, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36240033

RESUMO

While supervised learning techniques have demonstrated state-of-the-art performance in many medical image analysis tasks, the role of sample selection is important. Selecting the most informative samples contributes to the system attaining optimum performance with minimum labeled samples, which translates to fewer expert interventions and cost. Active Learning (AL) methods for informative sample selection are effective in boosting performance of computer aided diagnosis systems when limited labels are available. Conventional approaches to AL have mostly focused on the single label setting where a sample has only one disease label from the set of possible labels. These approaches do not perform optimally in the multi-label setting where a sample can have multiple disease labels (e.g. in chest X-ray images). In this paper we propose a novel sample selection approach based on graph analysis to identify informative samples in a multi-label setting. For every analyzed sample, each class label is denoted as a separate node of a graph. Building on findings from interpretability of deep learning models, edge interactions in this graph characterize similarity between corresponding interpretability saliency map model encodings. We explore different types of graph aggregation to identify informative samples for active learning. We apply our method to public chest X-ray and medical image datasets, and report improved results over state-of-the-art AL techniques in terms of model performance, learning rates, and robustness.


Assuntos
Diagnóstico por Computador , Tórax
16.
Hum Brain Mapp ; 44(3): 970-979, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36250711

RESUMO

Brain morphometry is usually based on non-enhanced (pre-contrast) T1-weighted MRI. However, such dedicated protocols are sometimes missing in clinical examinations. Instead, an image with a contrast agent is often available. Existing tools such as FreeSurfer yield unreliable results when applied to contrast-enhanced (CE) images. Consequently, these acquisitions are excluded from retrospective morphometry studies, which reduces the sample size. We hypothesize that deep learning (DL)-based morphometry methods can extract morphometric measures also from contrast-enhanced MRI. We have extended DL+DiReCT to cope with contrast-enhanced MRI. Training data for our DL-based model were enriched with non-enhanced and CE image pairs from the same session. The segmentations were derived with FreeSurfer from the non-enhanced image and used as ground truth for the coregistered CE image. A longitudinal dataset of patients with multiple sclerosis (MS), comprising relapsing remitting (RRMS) and primary progressive (PPMS) subgroups, was used for the evaluation. Global and regional cortical thickness derived from non-enhanced and CE images were contrasted to results from FreeSurfer. Correlation coefficients of global mean cortical thickness between non-enhanced and CE images were significantly larger with DL+DiReCT (r = 0.92) than with FreeSurfer (r = 0.75). When comparing the longitudinal atrophy rates between the two MS subgroups, the effect sizes between PPMS and RRMS were higher with DL+DiReCT both for non-enhanced (d = -0.304) and CE images (d = -0.169) than for FreeSurfer (non-enhanced d = -0.111, CE d = 0.085). In conclusion, brain morphometry can be derived reliably from contrast-enhanced MRI using DL-based morphometry tools, making additional cases available for analysis and potential future diagnostic morphometry tools.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia , Esclerose Múltipla Recidivante-Remitente/patologia
17.
Sci Rep ; 12(1): 20732, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456605

RESUMO

Currently, radiologists face an excessive workload, which leads to high levels of fatigue, and consequently, to undesired diagnosis mistakes. Decision support systems can be used to prioritize and help radiologists making quicker decisions. In this sense, medical content-based image retrieval systems can be of extreme utility by providing well-curated similar examples. Nonetheless, most medical content-based image retrieval systems work by finding the most similar image, which is not equivalent to finding the most similar image in terms of disease and its severity. Here, we propose an interpretability-driven and an attention-driven medical image retrieval system. We conducted experiments in a large and publicly available dataset of chest radiographs with structured labels derived from free-text radiology reports (MIMIC-CXR-JPG). We evaluated the methods on two common conditions: pleural effusion and (potential) pneumonia. As ground-truth to perform the evaluation, query/test and catalogue images were classified and ordered by an experienced board-certified radiologist. For a profound and complete evaluation, additional radiologists also provided their rankings, which allowed us to infer inter-rater variability, and yield qualitative performance levels. Based on our ground-truth ranking, we also quantitatively evaluated the proposed approaches by computing the normalized Discounted Cumulative Gain (nDCG). We found that the Interpretability-guided approach outperforms the other state-of-the-art approaches and shows the best agreement with the most experienced radiologist. Furthermore, its performance lies within the observed inter-rater variability.


Assuntos
Radiologia , Humanos , Radiografia , Radiologistas , Diagnóstico por Computador , Computadores
18.
Sci Data ; 9(1): 762, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496501

RESUMO

Magnetic resonance imaging (MRI) is an important imaging modality in stroke. Computer based automated medical image processing is increasingly finding its way into clinical routine. The Ischemic Stroke Lesion Segmentation (ISLES) challenge is a continuous effort to develop and identify benchmark methods for acute and sub-acute ischemic stroke lesion segmentation. Here we introduce an expert-annotated, multicenter MRI dataset for segmentation of acute to subacute stroke lesions ( https://doi.org/10.5281/zenodo.7153326 ). This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location. It is split into a training dataset of n = 250 and a test dataset of n = 150. All training data is publicly available. The test dataset will be used for model validation only and will not be released to the public. This dataset serves as the foundation of the ISLES 2022 challenge ( https://www.isles-challenge.org/ ) with the goal of finding algorithmic methods to enable the development and benchmarking of automatic, robust and accurate segmentation methods for ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Benchmarking
19.
Foods ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36496674

RESUMO

Honey adulteration is a common practice that affects food quality and sale prices, and certifying the origin of the honey using non-destructive methods is critical. Guindo Santo and Quillay are fundamental for the honey production of Biobío and the Ñuble region in Chile. Furthermore, Guindo Santo only exists in this area of the world. Therefore, certifying honey of this species is crucial for beekeeper communities-mostly natives-to give them advantages and competitiveness in the global market. To solve this necessity, we present a system for detecting adulterated endemic honey that combines different artificial intelligence networks with a confocal optical microscope and a tunable optical filter for hyperspectral data acquisition. Honey samples artificially adulterated with syrups at concentrations undetectable to the naked eye were used for validating different artificial intelligence models. Comparing Linear discriminant analysis (LDA), Support vector machine (SVM), and Neural Network (NN), we reach the best average accuracy value with SVM of 93% for all classes in both kinds of honey. We hope these results will be the starting point of a method for honey certification in Chile in an automated way and with high precision.

20.
Sci Data ; 9(1): 768, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522344

RESUMO

Publicly available Glioblastoma (GBM) datasets predominantly include pre-operative Magnetic Resonance Imaging (MRI) or contain few follow-up images for each patient. Access to fully longitudinal datasets is critical to advance the refinement of treatment response assessment. We release a single-center longitudinal GBM MRI dataset with expert ratings of selected follow-up studies according to the response assessment in neuro-oncology criteria (RANO). The expert rating includes details about the rationale of the ratings. For a subset of patients, we provide pathology information regarding methylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter status and isocitrate dehydrogenase 1 (IDH1), as well as the overall survival time. The data includes T1-weighted pre- and post-contrast, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) MRI. Segmentations from state-of-the-art automated segmentation tools, as well as radiomic features, complement the data. Possible applications of this dataset are radiomics research, the development and validation of automated segmentation methods, and studies on response assessment. This collection includes MRI data of 91 GBM patients with a total of 638 study dates and 2487 images.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Regiões Promotoras Genéticas , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...